Half of Earth’s satellites restrict use of climate data

File 20180330 189807 9kpl5p.jpg?ixlib=rb 1.1
Dust storms in the Gulf of Alaska, captured by NASA’s Aqua satellite.
NASA

By Mariel Borowitz, Georgia Institute of Technology

Scientists and policymakers need satellite data to understand and address climate change. Yet data from more than half of unclassified Earth-observing satellites is restricted in some way, rather than shared openly.

When governments restrict who can access data, or limit how people can use or redistribute it, that slows the progress of science. Now, as U.S. climate funding is under threat, it’s more important than ever to ensure that researchers and others make the most of the collected data.

Why do some nations choose to restrict satellite data, while others make it openly available? My book, “Open Space,” uses a series of historical case studies, as well as a broad survey of national practices, to show how economic concerns and agency priorities shape the way nations treat their data.

The price of data

Satellites can collect comprehensive data over the oceans, arctic areas and other sparsely populated zones that are difficult for humans to monitor. They can collect data consistently over both space and time, which allows for a high level of accuracy in climate change research.

For example, scientists use data from the U.S.-German GRACE satellite mission to measure the mass of the land ice in both the Arctic and Antarctic. By collecting data on a regular basis over 15 years, GRACE demonstrated that land ice sheets in both Antarctica and Greenland have been losing mass since 2002. Both lost ice mass more rapidly since 2009.

Satellites collect valuable data, but they’re also expensive, typically ranging from US$100 million to nearly $1 billion per mission. They’re usually designed to operate for three to five years, but quite often continue well beyond their design life.

Many nations attempt to sell or commercialize data to recoup some of the costs. Even the U.S. National Oceanic and Atmospheric Administration and the European Space Agency – agencies that now make nearly all of their satellite data openly available – attempted data sales at an earlier stage in their programs. The U.S. Landsat program, originally developed by NASA in the early 1970s, was turned over to a private firm in the 1980s before later returning to government control. Under these systems, prices often ranged from hundreds to thousands of dollars per image.

https://datawrapper.dwcdn.net/IpN0F/1/

In other cases, agency priorities prevent any data access at all. As of 2016, more than 35 nations have been involved in the development or operation of an Earth observation satellite. In many cases, nations with small or emerging space programs, such as Egypt and Indonesia, have chosen to build relatively simple satellites to give their engineers hands-on experience.

Since these programs aim to build capacity and demonstrate new technology, rather than distribute or use data, data systems don’t receive significant funding. Agencies can’t afford to develop data portals and other systems that would facilitate broad data access. They also often mistakenly believe that demand for the data from these experimental satellites is low.

If scientists want to encourage nations to make more of their satellite data openly available, both of these issues need to be addressed.

Landsat 8, an American Earth observation satellite.
NASA, CC BY

Promoting access

Since providing data to one user doesn’t reduce the amount available for everyone else, distributing data widely will maximize the benefits to society. The more that open data is used, the more we all benefit from new research and products.

In my research, I’ve found that making data freely available is the best way to make sure the greatest number of people access and use it. In 2001, the U.S. Geological Survey sold 25,000 Landsat images, a record at the time. Then Landsat data was made openly available in 2008. In the year following, the agency distributed more than 1 million Landsat images.

For nations that believe demand for their data is low, or that lack resources to invest in data distribution systems, economic arguments alone are unlikely to spur action. Researchers and other user groups need to raise awareness of the potential uses of this data and make clear to governments their desire to access and use it.

Intergovernmental organizations like the Group on Earth Observations can help with these efforts by connecting research and user communities with relevant government decision-makers. International organizations can also encourage sharing by providing nations with global recognition of their data-sharing efforts. Technical and logistical assistance – helping to set up data portals or hosting foreign data in existing portals – can further reduce the resource investment required by smaller programs.

Promise for future

Satellite technology is improving rapidly. I believe that agencies must find ways to take advantage of these developments while continuing to make data as widely available as possible.

Satellites are collecting more data than ever before. Landsat 8 collected more data in its first two years of operation than Landsat 4 and 5 collected over their combined 32-year lifespan. The Landsat archive currently grows by a terabyte a day.

This avalanche of data opens promising new possibilities for big data and machine learning analyses – but that would require new data access systems. Agencies are embracing cloud technology as a way to address this challenge, but many still struggle with the costs. Should agencies pay commercial cloud providers to store their data, or develop their own systems? Who pays for the cloud resources needed to carry out the analysis: agencies or users?

The ConversationSatellite data can contribute significantly to a wide range of areas – climate change, weather, natural disasters, agricultural development and more – but only if users can access the data.

Mariel Borowitz, Assistant Professor of International Affairs, Georgia Institute of Technology

This article was originally published on The Conversation. Read the original article.

Why we developed a microscope for your phone – and published the design

 

File 20180221 161929 1iqfjtt.png?ixlib=rb 1.1
Soon you could be looking at microscopic creatures with your mobile phone.
Scientific Reports, CC BY-SA

Antony Orth, RMIT University

My colleagues and I have developed a 3D printable “clip-on” that can turn your smartphone into a fully functional microscope.

We’ve released the design online so that anyone can print it and modify it to suit their needs.

But why?




Read more:
Blood tests and diagnosing illness: what can blood tell us about what’s happening in our body?


For a lot of medical diagnostics, you need to look at small stuff – down to the level of individual cells. To do that, you need a microscope.

There’s been a push over the past decade or so by scientists and engineers to bring diagnostics into the home, and to other areas where you can’t really bring traditional lab equipment.

Scientists are hoping that this will allow them to, for example, detect malaria and other blood borne parasites in the field in Africa.

And the backbone of a lot of portable medical diagnostic devices is a mobile phone-based microscope.

A good place to start

You may not think of your mobile phone as being anything like a microscope, but it has almost all the parts you need. The lens and camera sensor are arranged exactly as they would be inside a microscope – all you need to do to get some magnification is stick another lens in front.

The next part is to think about how you are going to illuminate your sample, which is often just as important as the lenses you use.

There’s been a lot of great work over the past decade or so engineering mobile phone microscopes with amazing capabilities – for example, the Fletcher lab at UC Berkeley, and the Ozcan lab at UCLA – and a lot of it has to do with custom illumination.

The engineering involved to assemble these mobile phone microscopes is not trivial, however. You often need a decent amount of skill and a lab to be able to put these devices together. We wanted to see how simple we could make a microscope, meaning the fewest extra parts and assembly steps possible.

Guiding the flash

We figured that it made a lot of sense to use the internal flash in the camera to light up your sample. The challenge is that the flash points in the wrong direction – you need to turn it around to shine through the sample and into the camera.

Redirecting light like this usually requires something fancy like a mirror or a prism. But we realised that the flash on a phone is so bright we can just use the diffuse reflection (glare) off regular plastic. So we designed the clip to have a series of tunnels that confine light and turn it around to face the sample and camera.

Left: Wireframe schematic of the clip on device. Flash illumination is indicated by the blue arrow. Upon striking the illumination backstop (made of the same 3D printed resin as the rest of the clip), this light is reflected diffusely towards the sample and then through the lens into the camera. Right: Cutaway 3D model of the clip-on device, showing the illumination tunnels.
Scientific Reports, CC BY

A lot of light is absorbed by the 3D printed resin of the clip, which is black. But it’s not perfectly black, and even the tiny fraction of light that makes it through the tunnels and reflects off of the black surface is more than enough to light up a microscopic sample. And that’s it – no mirrors, prisms or illumination lenses are needed.




Read more:
Explainer: how scientists invent new colours


Light and dark

Next, of course, you need something to look at. The local pond is a good place to start. Put some water on a slide or in a capillary tube and you will find many cool-looking microorganisms going about their lives.

A microorganism viewed with the mobile phone microscope.

This type of illumination is called bright-field microscopy. But we actually went a bit further, and showed that you can turn the flash off and use the Sun to perform dark-field microscopy – where the specimen is lit up, but the field around it is dark.

The clip is designed in such a way that sunlight (or ambient room light) gets trapped in the glass sample slide, and can only be redirected into the mobile phone camera if it hits an object in the sample. If the sample slide is empty, the background is dark (hence dark-field). If there is an object it shines bright on the dark background, and as such this is a great way to detect really subtle objects such as cells (which are mostly water) sitting in water.

What we’re hoping is that our design, or something like it, gets used for ultra simple, cheap and robust mobile phone based devices – be it for medical diagnostics in underserved areas such as the remote Australian outback and central Africa, or monitoring microorganism populations in local water sources.




Read more:
How we’ve evolved to fight the bugs that infect us


We’ve released the design online so that anyone can print it and modify it to suit their needs. This part is important because the mission of low-cost microscopy is to ease access to this high tech equipment. This is best accomplished when everyone has the opportunity to make one for themselves or to adapt it freely.

The ConversationThe clip can be printed using any 3D printer – we prefer the Formlabs family of printers – and you’ll need black resin. The cost in resin per clip is typically a couple of dollars at most. You’ll also need a lens to put in the clip. We buy ours from an online retailer and then remove the lens from the camera module.

Antony Orth, Research Officer , RMIT University

This article was originally published on The Conversation. Read the original article.